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Sydney Precision Bioinformatics Research Group

We share an interest in developing statistical and computational methodologies to 
tackle the foremost significant challenges posed by modern biology and medicine.

Meet our senior and junior research leaders …

… and senior research associates: 4; PhD candidates: 20; Honours and TSP students: 8

Find out more: http://www.maths.usyd.edu.au/bioinformatics/

Get interactive: http://shiny.maths.usyd.edu.au/
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k-means Clustering on GSE60361

k-means

Zeisel A, et al. Science 2015

pre-defined cell types

k-means Clustering on GSE60361
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Evaluation results (against the pre-defined cell types)

Multiple datasets
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Clustering metrics
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What is differential correlation?

Consider the expression of gene x and gene y
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Differential correlation across pseudotime

Hepatocyte 

Cholangiocyte

Hepatoblast Cell trajectory as estimated using Monocle 2
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Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation

W
e
ig

h
te

d
 c

o
rr

e
la

ti
o
n

Cholangiocyte Hepatocyte



The University of Sydney Page 26

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation

W
e
ig

h
te

d
 c

o
rr

e
la

ti
o
n

Cholangiocyte Hepatocyte



The University of Sydney Page 27

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 28

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 29

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 30

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 31

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 32

Pcna: DNA replication, cell cycle. Correlation lost during 

differentiation Cholangiocyte Hepatocyte



The University of Sydney Page 33

Clustering metrics
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Previous work on mixture modelling

Ghazanfar et al BMC Systems Biology 2016



The University of Sydney Page 35

Previous work on mixture modelling
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Stably 
expressed 

genes

Human early developmental dataset 
(Petropoulos et al.):

1529 cells from five timepoints: 
E3, E4, E5, E6, E7

Datasets with wide ranges of cell types

Establishing a good set of stably expressed genes

Mouse early developmental dataset 

(Scialdone et al.):

1205 cells from four timepoints: 

E6.5, E7.0, E7.5, E7.75
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Building features for stably expressed genes

Any conditions or known cell types
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Building features for stably expressed genes

Any conditions or known cell types

Stably expressed index

Stably expressed genes (SEG)
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What about GAPDH?
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Evaluation of scSEG (PCA plot) -

Human early developmental dataset (Petropoulos et al)

ALL genes

House keeping

genes based on
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Eisenberg and Levanon. 2003. Human housekeeping genes are compact. Trends Genet 19 Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :
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microarray data

Proposed 

scSEG
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Clustering metrics
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Finding stably expressed genes
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Single cell
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GSE87795 

Su et al.

Liver fetal development time course datasets – integrating multiple 

datasets

E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5
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E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5

GSE87795 

Su et al.

GSE90047 

Yang et al.

GSE87038 

Dong et al.

GSE96981 

Camp et al.

N = 320 cells

N = 389 cells

N = 79 cells

N = 448 cells

Liver fetal development time course datasets
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tSNE of liver fetal development time course datasets

Highlighted by cell types Highlighted by batches
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tSNE of liver fetal development time course datasets

Highlighted by cell types Highlighted by batches

Challenge:

Strong “batch effect”
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scMerge
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Breaking observed data into components

𝒀𝒎×𝒏 = 𝑿𝒎×𝒑𝜷𝒑×𝒏 +𝑾𝒎×𝒌𝜶𝒌×𝒏 + 𝝐𝒎×𝒏

The data we observe

For n cells with data collected for m genes

Biologically relevant variation

cell types

p wanted variables

Unwanted variation

batch and technical effects

k unwanted variables

Random noise
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scMerge: algorithm

RUVIII

𝒀𝒎×𝒏 = 𝑿𝒎×𝒑𝜷𝒑×𝒏 +𝑾𝒎×𝒌𝜶𝒌×𝒏 + 𝝐𝒎×𝒏

Estimate unwanted variation
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scMerge: algorithm

RUVIII
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But cells don’t have 
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Estimate 
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scMerge: algorithm

Pseudo-

replicates

Idea: 

• Consider cells from the same cell 

type as a set of pseudo-replicates

• Match the cell types across 

different batches



The University of Sydney Page 70

scMerge: algorithm

Pseudo-

replicates

Clustering for each batch 
(k-means by default)
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scMerge: algorithm

Pseudo-

replicates

Find Mutual Nearest Clusters 

as pseudo-replicates

Clustering for each batch 
(k-means by default)
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scMerge: algorithm

Pseudo-

replicates

Find Mutual Nearest Clusters 

as pseudo-replicates

Clustering for each batch 
(k-means by default)

Frame as pseudo-replicate 

information
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scMerge: algorithm

RUVIII

𝒀𝒎×𝒏 = 𝑿𝒎×𝒑𝜷𝒑×𝒏 +𝑾𝒎×𝒌𝜶𝒌×𝒏 + 𝝐𝒎×𝒏

Single-cell 
stably 

expressed 
genes (SEG)

Pseudo-
replicates



The University of Sydney Page 74

Coming back to our motivational data –

Liver fetal development time course datasets
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Results: liver datasets tSNE

logcounts combat mnnCorrect ZINB-WaVE Seurat scMerge
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Results: liver datasets – tSNE retains rough trajectory
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More information

scMerge R package and website: 

https://sydneybiox.github.io/scMerge/
bioRxiv: 
https://www.biorxiv.org/content/early/2018/09/12/393280

https://sydneybiox.github.io/scMerge/
https://www.biorxiv.org/content/early/2018/09/12/393280
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More information

scMerge R package and website: 

https://sydneybiox.github.io/scMerge/
bioRxiv: 
https://www.biorxiv.org/content/early/2018/09/12/393280

Thursday workshop!

https://sydneybiox.github.io/scMerge/
https://www.biorxiv.org/content/early/2018/09/12/393280
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Clustering metrics

scMerge

Finding stably expressed genes

Differential correlationSydney 
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