scMerge: Integration of multiple single-cell transcriptomics datasets leveraging stable expression and pseudoreplication

Presented by

Dr Shila Ghazanfar Judith and David Coffey LifeLab Charles Perkins Centre

School of Mathematics and Statistics The University of Sydney

@shazanfar

A brief history

BioInfoSummer

he University of Sydney 7–11 December 2015

Sydney Precision Bioinformatics Research Group

We share an interest in developing statistical and computational methodologies to tackle the foremost significant challenges posed by modern biology and medicine.

Meet our senior and junior research leaders ...

... and senior research associates: 4; PhD candidates: 20; Honours and TSP students: 8

Find out more: Get interactive: http://www.maths.usyd.edu.au/bioinformatics/ http://shiny.maths.usyd.edu.au/

Key underlying aspect of clustering? Similarity metrics

Key underlying aspect of clustering? Similarity metrics

Pearson $s_{ij} = \frac{\sum_{g=1}^{G} (x_{ig} - \overline{x}_i)(x_{jg} - \overline{x}_j)}{\sqrt{\sum_{g=1}^{G} (x_{ig} - \overline{x}_i)^2} \sqrt{\sum_{g=1}^{G} (x_{jg} - \overline{x}_j)^2}};$ Spearman $s_{ij} = \frac{\sum_{g=1}^{G} (r_{ig} - \overline{r}_i)(x_{jg} - \overline{r}_j)}{\sqrt{\sum_{g=1}^{G} (r_{ig} - \overline{r}_i)^2} \sqrt{\sum_{g=1}^{G} (r_{jg} - \overline{r}_j)^2}},$

Key underlying aspect of clustering? Similarity metrics

k-means Clustering on GSE60361

k-means

(a)

Annotated cells (GSE60361)

pre-defined cell types

- pyramidal CA1
- pyramidal SS •
- interneurons
- microglia
- oligodendrocytes endothelial mural
- •
- astrocytes ependymal

k-means Clustering on GSE60361

k-means

(a)

pre-defined cell types

- pyramidal CA1
- pyramidal SS
- interneurons
- microglia
- oligodendrocytes endothelial mural
- astrocytes ependymal

(b) *k*-means clustering using Pearson NMI=0.79; ARI=0.84; FM=0.87; Jaccard=0.77

Zeisel A, et al. Science 2015

The University of Sydney

k-means Clustering on GSE60361

k-means

pre-defined cell types

- pyramidal CA1
- pyramidal SS
- interneurons
- microglia
- oligodendrocytes
- endothelial mural
- astrocytes ependymal

(b) *k*-means clustering using Pearson NMI=0.79; ARI=0.84; FM=0.87; Jaccard=0.77

(C) *k*-means clustering using Euclidean NMI=0.61; ARI=0.55; FM=0.65; Jaccard=0.48

Evaluation results (against the pre-defined cell types)

Evaluation results (against the pre-defined cell types)

Impact of similarity metrics on singlecell RNA-seq data clustering

Taiyun Kim, Irene Rui Chen, Yingxin Lin, Andy Yi-Yang Wang, Jean Yee Hwa Yang, Pengyi Yang

Briefings in Bioinformatics, bby076,

Taiyun Kim

PC1

PC1

• 2 • 3

Consider the expression of gene x and gene y

Consider the expression of gene x and gene y

Now consider the expression of gene x and gene z

Now consider the expression of gene x and gene z

Differential correlation

Bioinformatics, 2018, 1–7 doi: 10.1093/bioinformatics/bty698 Advance Access Publication Date: 9 August 2018 Original Paper

OXFORD

Systems biology

DCARS: differential correlation across ranked samples

Shila Ghazanfar (b^{1,2,*}, Dario Strbenac², John T. Ormerod^{2,3}, Jean Y. H. Yang^{2,1} and Ellis Patrick (b^{2,4})

Installation

Install the development version from GitHub: # install.packages("devtools") devtools::install_github("shazanfar/DCARS") library(DCARS)

Differential correlation across pseudotime

State • 1 • 2 • 3

Hepatoblast

Differential correlation across pseudotime

Cell trajectory as estimated using Monpcles 2

Differential correlation across pseudotime

The University of Sydney

Hepatocyte

Rpa2

Pena

Pold3

Hepatocyte

Hepatocyte

Rbbp4

Rnf2

Rbbp4

(Rnf2

Mcm6

Rpa2

Pena

Pold3

The University of Sydney

Rbbp4

Rnf2

Mcm6

Pena

Pold3

Rpa2

Middle

7.5

5.0

Pcna

2.5

2.5

Rbbp4

Rnf2

Mcm6

Pena

Pold3

Rpa2

7.5

5.0

Late

Previous work on mixture modelling

<u>BMC Syst Biol</u>. 2016; 10(Suppl 5): 127. Published online 2016 Dec 5. doi: <u>10.1186/s12918-016-0370-4</u> PMCID: PMC5249008 PMID: 28105940

Integrated single cell data analysis reveals cell specific networks and novel coactivation markers

Shila Ghazanfar,^{⊠1} Adam J. Bisogni,² John T. Ormerod,^{1,3} David M. Lin,² and Jean Y. H. Yang¹ Author information ► Article notes ► Copyright and License information ► Disclaimer

Ghazanfar et al BMC Systems Biology 2016

Previous work on mixture modelling

<u>BMC Syst Biol</u>. 2016; 10(Suppl 5): 127. Published online 2016 Dec 5. doi: <u>10.1186/s12918-016-0370-4</u> PMCID: PMC5249008 PMID: 28105940

Integrated single cell data analysis reveals cell specific networks and novel coactivation markers

Shila Ghazanfar,^{⊠1} Adam J. Bisogni,² John T. Ormerod,^{1,3} David M. Lin,² and Jean Y. H. Yang¹ Author information ► Article notes ► Copyright and License information ► Disclaimer

Ghazanfar et al BMC Systems Biology 2016

Establishing a good set of stably expressed genes

Datasets with wide ranges of cell types

Human early developmental dataset (Petropoulos et al.): 1529 cells from five timepoints: E3, E4, E5, E6, E7

Mouse early developmental dataset (Scialdone et al.): 1205 cells from four timepoints: E6.5, E7.0, E7.5, E7.75

Building features for stably expressed genes

- Mixture Model:
 - Mixing Proportion of the second component (λ_i)
 - **Standard deviation** of the second component (σ_i)

- **Zero Proportion** of each gene across all the cells (ω_i)
- F-statistics from one-way ANOVA (F_i):

 $\log_2 FPKM \sim$ Any conditions or known cell types

Building features for stably expressed genes

- Mixture Model:
 - Mixing Proportion of the second component (λ_i)
 - **Standard deviation** of the second component (σ_i)

- **Zero Proportion** of each gene across all the cells (ω_i)
- **F-statistics** from one-way ANOVA (*F_i*):

 $\log_2 FPKM \sim$ Any conditions or known cell types

Stably expressed index

What about GAPDH?

Human early developmental dataset (Petropoulos et al)

House-keeping genes based on microarray data

House keeping genes based on bulk RNA-seq

ALL genes

Proposed scSEG

The I Iniversity of Svdnev

Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :

Human early developmental dataset (Petropoulos et al)

House-keeping genes based on microarray data

House keeping genes based on bulk RNA-seq

ALL genes

Proposed scSEG

The I Iniversity of Svdnev

Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :

Human early developmental dataset (Petropoulos et al)

The I Iniversity of Svdnev

Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :

Human early developmental dataset (Petropoulos et al)

The I Iniversity of Svdnev

Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :

Eisenberg and Levanon. 2003. Human housekeeping genes are compact. Trends Genet 19

Page 43

Human early developmental dataset (Petropoulos et al)

The I Iniversity of Svdnev

Eisenberg and Levanon 2013. Human housekeeping genes, revisited. Trends Genet 29 :

Eisenberg and Levanon. 2003. Human housekeeping genes are compact. Trends Genet 19

Page 44

this article search submit a manuscript register

Genomics

Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development

Xianbin Su,^{#1} Yi Shi,^{#1} Xin Zou,^{#1} Zhao-Ning Lu,^{#1} Gangcai Xie,² Jean Y. H. Yang,³ Chong-Chao Wu,¹ Xiao-Fang Cui,¹ Kun-Yan He,¹ Qing Luo,¹ Yu-Lan Qu,¹ Na Wang,¹ Lan Wang,¹ and Ze-Guang Han^{II,4}

Author information
Article notes
Copyright and License information
Disclaimer

The Open Access Publisher

Multilineage communication regulates human liver bud development from pluripotency

J. Gray Camp¹*, Keisuke Sekine²*, Tobias Gerber¹, Henry Loeffler–Wirth³, Hans Binder³, Malgorzata Gac¹, Sabina Kanton¹, Jorge Kageyama¹, Georg Damm^{4,5}, Daniel Seehofer^{4,5}, Lenka Belicova⁶, Marc Bickle⁶, Rico Barsacchi⁶, Ryo Okuda², Emi Yoshizawa², Masaki Kimura², Hiroaki Ayabe², Hideki Taniguchi², Takanori Takebe^{2,7} & Barbara Treutlein^{1,6}

ell RNA-Seq analysis reveals dynamic trajectories during ver development

¹ <u>Yi Shi</u>,^{#1} <u>Xin Zou</u>,^{#1} <u>Zhao-Ning Lu</u>,^{#1} <u>Gangcai Xie</u>,² <u>Jean Y. H. Yang</u>,³ <u>Chong-Chao Wu</u>,¹ <u>ui</u>,¹ <u>Kun-Yan He</u>,¹ <u>Qing Luo</u>,¹ <u>Yu-Lan Qu</u>,¹ <u>Na Wang</u>,¹ <u>Lan Wang</u>,¹ and <u>Ze-Guang Han</u>^{II,4}

tion
<u>Article notes</u> <u>Copyright and License information</u> <u>Disclaimer</u>

LE A Single-Cell Transcriptomic **Analysis Reveals Precise Pathways** Multilin and Regulatory Mechanisms Underlying bud dev Hepatoblast Differentiation

J. Gray Camp^{1*}, Kei Jorge Kageyama¹, C Li Yang,^{1,2*} Wei-Hua Wang,^{1,2*} Wei-Lin Qiu,^{1,3*} Zhen Guo,¹ Erfei Bi,⁴ and Cheng-Ran Xu¹ Emi Yoshizawa², M

946. :4. doi: 10.1186/s12864-017-4342-x PMCID: PMC5715535 PMID: 29202695

A-Seg analysis reveals dynamic trajectories during velopment

¹ <u>Xin Zou</u>,^{#1} <u>Zhao-Ning Lu</u>,^{#1} <u>Gangcai Xie</u>,² <u>Jean Y. H. Yang</u>,³ <u>Chong-Chao Wu</u>,¹ <u>(an He</u>,¹ <u>Qing Luo</u>,¹ <u>Yu-Lan Qu</u>,¹ <u>Na Wang</u>,¹ <u>Lan Wang</u>,¹ and <u>Ze-Guang Han</u>^{1,4}

Liver fetal development time course datasets

tSNE of liver fetal development time course datasets

tSNE of liver fetal development time course datasets

Current approaches

Current approaches

_comp&t8t8t88a

Current approaches

Normalization of RNA-seq data using factor analysis

Davide Risso¹, John Ngai²⁴, Terence P Speed^{1,5,6} & Sandrine Dudoit^{1,7}

of control genes or samples

Biostatistics

Article Navigation

W. Evan Johnson, Cheng Li 💌, Ariel Rabinovic

Issues Advance articles Submit
Purchase Alerts About

 Biostoristics, Volume 8, Issue 1, 1 January 2007, Pages 118-127, https://doi.org/10.1093/biostatistics/kvj037

Adjusting batch effects in microarray expression data using empirical Bayes

_comp&tational

ANALYSIS

Laleh Haghverdi, Aaron T L Lun, Michael D Morgan & John C Marioni 🖾

Nature Biotechnology 36, 421–427 (2018) Download Citation 🛓

scMerge

Breaking observed data into components

For n cells with data collected for m genes

The data we observe Biologically relevant variation Unwanted variation cell types batch and technical effects *p wanted variables k unwanted variables*

HOME AB

THE PREPRINT SERVER FOR BIOLOGY

Search

New Results

A new normalization for the Nanostring nCounter gene expression assay

Ramyar Molania, Johann A Gagnon-Bartsch, Alexander Dobrovic, Terence P Speed **doi:** https://doi.org/10.1101/374173

This article is a preprint and has not been peer-reviewed [what does this mean?].

Estimate unwanted variation

<u>ldea:</u>

- Consider cells from the same cell type as a set of pseudo-replicates
- Match the cell types across different batches

Pseudoreplicates

Cluster centre

Batch 3

Pseudoreplicates

Batch 1

Batch 2
scMerge: algorithm

Coming back to our motivational data – Liver fetal development time course datasets

Before scMerge

cell_types

- cholangiocyte
- Endothelial Cell
- Epithelial Cell
- Hematopoietic
- hepatoblast/hepatocyte
- Immune cell
- Mesenchymal Cell
- Stellate Cell

batch

- GSE87038
- + GSE87795
- □ GSE90047
- × GSE96981

Coming back to our motivational data – Liver fetal development time course datasets

The University of Sydney

Results: liver datasets – tSNE retains rough trajectory

More information

bioRxiv:

https://www.biorxiv.org/content/early/2018/09/12/393280

scMerge R package and website:

https://sydneybiox.github.io/scMerge/

scMerge 0.1.14 🕋 Vignette Reference Case Study -

scMerge

scMerge is a R package for merging and normalising single-cell RNA-Seq datasets.

[©] Installation

The installation process could take up to 5 minutes, depending if you have some of the packages pre-installed.

Some CRAN packages required by scMerge
install.packages(c("ruv", "rsvd", "igraph", "pdist", "proxy", "foreach", "doSNOW", "distr", "Rcpp", "RcppEi
devtools::install_github("theislab/kBET")

Some BioConductor packages required by scMerge # try http:// if https:// URLs are not supported source("https://bioconductor.org/biocLite.R") biocLite(c("SingleCellExperiment", "M3Drop"))

Installing scMerge and the data files using devtools::install_github("SydneyBioX/scMerge.data") devtools::install_github("SydneyBioX/scMerge")

Vignette

You can find the vignette at our website: https://sydneybiox.github.io/scMerge/index.html

New Results

scMerge: Integration of multiple single-cell transcriptomics datasets leveraging stable expression and pseudoreplication

Yingxin Lin, D Shila Ghazanfar, Kevin Wang, Johann A. Gagnon-Bartsch, Kitty K. Lo, Xianbin Su, Ze-Guang Han, John T. Ormerod, Terence P. Speed, D Pengyi Yang, Jean Y. H. Yang **doi:** https://doi.org/10.1101/393280

More information

bioRxiv:

https://www.biorxiv.org/content/early/2018/09/12/393280

New Results

scMerge: Integration of multiple single-cell transcriptomics datasets leveraging stable expression and pseudoreplication

Yingxin Lin, D Shila Ghazanfar, Kevin Wang, Johann A. Gagnon-Bartsch, Kitty K. Lo, Xianbin Su, Ze-Guang Han, John T. Ormerod, Terence P. Speed, D Pengyi Yang, Jean Y. H. Yang **doi:** https://doi.org/10.1101/393280

Thursday workshop!

scMerge R package and website:

https://sydneybiox.github.io/scMerge/

scMerge 0.1.14 🕆 Vignette Reference Case Study -

scMerge

scMerge is a R package for merging and normalising single-cell RNA-Seq datasets.

[©] Installation

The installation process could take up to 5 minutes, depending if you have some of the packages pre-installed.

Some CRAN packages required by scMerge install.packages(c("ruv", "rsvd", "igraph", "pdist", "proxy", "foreach", "doSNOW", "distr", "Rcpp", "RcppEi devtools::install_github("theislab/kBET")

Some BioConductor packages required by scMerge # try http:// if https:// URLs are not supported source("https://bioconductor.org/biocLite.R") biocLite(c("SingleCellExperiment", "M3Drop"))

Installing scMerge and the data files using devtools::install_github("SydneyBioX/scMerge.data") devtools::install_github("SydneyBioX/scMerge")

Vignette

You can find the vignette at our website: https://sydneybiox.github.io/scMerge/index.html.

Acknowledgements

Usyd School of Mathematics and Statistics

- Jean Yang
- Pengyi Yang
- John Ormerod
- Yingxin Lin
- Kevin Wang
- Taiyun Kim
- Irene Chen
- Andy Wang

Usyd Faculty of Science

- Kitty Lo

WEHI

- Terry Speed

University of Michigan

Johann Gagnon-Bartsch

Shanghai Jiao Tong University

- Zeguang Han
- Xianbin Su

