the DCARS function

DCARS(dat, xname, yname, W = NULL, rangeMin = 0, wcormin = 0,
  statmin = 0, extractTestStatisticOnly = FALSE,
  extractWcorSequenceOnly = FALSE, plot = FALSE, niter = 100,
  extractPermutationTestStatistics = FALSE, verbose = FALSE, ...)

Arguments

dat

a genes x samples gene expression rank matrix, should be already converted to ranks with first column lowest survival and last column highest survival

xname

name of row of dat to test together with yname

yname

name of row of dat to test together with xname

W

weight matrix for weighted correlations,

rangeMin

minimum range of weighted correlation vector to include for permutation testing

wcormin

minimum absolute value weighted correlation vector to include for permutation testing

statmin

minimum value DCARS test statistic to include for permutation testing

extractTestStatisticOnly

if TRUE, extract only the DCARS test statistic without permutation testing

plot

if TRUE plot observed weighted correlatin vector

niter

number of iterations for permutation testing

extractPermutationTestStatistics

if TRUE, extract only the DCARS test statistic without permutation testing

verbose

if TRUE, print updates

...

additional arguments passing on to weightMatrix()

extractWcorSequence

if TRUE, extract only the weighted correlation vector without permutation testing

Value

either single value (p-value or test statistic), vector (local weighted correlation), or list (combination of above) depending on the input parameters

Examples

data(STRING) data(SKCM) SKCM_rank = t(apply(SKCM,1,rank)) # highly significantly DCARS gene pair: SKP1 and SKP2 # calculates p-value based on permutation DCARS(SKCM_rank,"SKP1","SKP2",plot=TRUE)
#> weight matrix not specified, generating weight matrix now
#> span not specified, defaulting to 0.5
#> performing permutation test
#> [1] 0
# extract only the test statistic DCARS(SKCM_rank,"SKP1","SKP2", extractTestStatisticOnly = TRUE)
#> weight matrix not specified, generating weight matrix now
#> span not specified, defaulting to 0.5
#> [1] 0.227379
# not significantly DCARS gene pair: EIF3C and EIF5B # calculates p-value based on permutation DCARS(SKCM_rank,"EIF3C","EIF5B",plot=TRUE)
#> weight matrix not specified, generating weight matrix now
#> span not specified, defaulting to 0.5
#> performing permutation test
#> [1] 0.97
# extract only the test statistic DCARS(SKCM_rank,"EIF3C","EIF5B", extractTestStatisticOnly = TRUE)
#> weight matrix not specified, generating weight matrix now
#> span not specified, defaulting to 0.5
#> [1] 0.01790925
# build weight matrix W = weightMatrix(ncol(SKCM_rank), type = "triangular", span = 0.5, plot = TRUE)
#> Loading required package: gplots
#> #> Attaching package: 'gplots'
#> The following object is masked from 'package:stats': #> #> lowess
# extract DCARS test statistics SKCM_stats = DCARSacrossNetwork(SKCM_rank,edgelist = STRING, W = W, extractTestStatisticOnly = TRUE, verbose = FALSE) sort(SKCM_stats,decreasing=TRUE)[1:10]
#> GMPS_IMPDH1 SKP1_SKP2 COPB2_COPE ANAPC10_ANAPC5 TBL3_UTP18 #> 0.2518867 0.2273790 0.2075771 0.1800155 0.1672255 #> PSMD12_PSMD3 POLR3B_POLR3D RAD18_UBE2B SNRPB_SNRPG RPL26L1_RPL8 #> 0.1659466 0.1629938 0.1621321 0.1555048 0.1531930